This commit is contained in:
eric
2025-08-20 06:29:20 +00:00
parent 2aadf95801
commit dbe2d5d1b0
21 changed files with 44 additions and 44 deletions

View File

@@ -8,10 +8,10 @@
In deep learning, a &ldquo;channel&rdquo; can be thought of as a feature dimension. While this term is common in Convolutional Neural Networks for images (e.g., Red, Green, Blue channels), in LLMs, the analogous concept is the model&rsquo;s primary embedding dimension, commonly referred to as d_model."><meta name=keywords content="software engineer,performance engineering,Google engineer,tech blog,software development,performance optimization,Eric Liu,engineering blog,mountain biking,Jeep enthusiast,overlanding,camping,outdoor adventures"><meta name=twitter:card content="summary"><meta name=twitter:title content="Transformer's Core Mechanics"><meta name=twitter:description content="The Transformer architecture is the bedrock of modern Large Language Models (LLMs). While its high-level success is widely known, a deeper understanding requires dissecting its core components. This article provides a detailed, technical breakdown of the fundamental concepts within a Transformer block, from the notion of “channels” to the intricate workings of the attention mechanism and its relationship with other advanced architectures like Mixture of Experts.
1. The “Channel”: A Foundational View of d_model Link to heading In deep learning, a “channel” can be thought of as a feature dimension. While this term is common in Convolutional Neural Networks for images (e.g., Red, Green, Blue channels), in LLMs, the analogous concept is the models primary embedding dimension, commonly referred to as d_model."><meta property="og:url" content="/posts/transformer-s-core-mechanics/"><meta property="og:site_name" content="Eric X. Liu's Personal Page"><meta property="og:title" content="Transformer's Core Mechanics"><meta property="og:description" content="The Transformer architecture is the bedrock of modern Large Language Models (LLMs). While its high-level success is widely known, a deeper understanding requires dissecting its core components. This article provides a detailed, technical breakdown of the fundamental concepts within a Transformer block, from the notion of “channels” to the intricate workings of the attention mechanism and its relationship with other advanced architectures like Mixture of Experts.
1. The “Channel”: A Foundational View of d_model Link to heading In deep learning, a “channel” can be thought of as a feature dimension. While this term is common in Convolutional Neural Networks for images (e.g., Red, Green, Blue channels), in LLMs, the analogous concept is the models primary embedding dimension, commonly referred to as d_model."><meta property="og:locale" content="en"><meta property="og:type" content="article"><meta property="article:section" content="posts"><meta property="article:published_time" content="2025-08-19T00:00:00+00:00"><meta property="article:modified_time" content="2025-08-20T06:04:36+00:00"><link rel=canonical href=/posts/transformer-s-core-mechanics/><link rel=preload href=/fonts/fa-brands-400.woff2 as=font type=font/woff2 crossorigin><link rel=preload href=/fonts/fa-regular-400.woff2 as=font type=font/woff2 crossorigin><link rel=preload href=/fonts/fa-solid-900.woff2 as=font type=font/woff2 crossorigin><link rel=stylesheet href=/css/coder.min.6445a802b9389c9660e1b07b724dcf5718b1065ed2d71b4eeaf981cc7cc5fc46.css integrity="sha256-ZEWoArk4nJZg4bB7ck3PVxixBl7S1xtO6vmBzHzF/EY=" crossorigin=anonymous media=screen><link rel=stylesheet href=/css/coder-dark.min.a00e6364bacbc8266ad1cc81230774a1397198f8cfb7bcba29b7d6fcb54ce57f.css integrity="sha256-oA5jZLrLyCZq0cyBIwd0oTlxmPjPt7y6KbfW/LVM5X8=" crossorigin=anonymous media=screen><link rel=icon type=image/svg+xml href=/images/favicon.svg sizes=any><link rel=icon type=image/png href=/images/favicon-32x32.png sizes=32x32><link rel=icon type=image/png href=/images/favicon-16x16.png sizes=16x16><link rel=apple-touch-icon href=/images/apple-touch-icon.png><link rel=apple-touch-icon sizes=180x180 href=/images/apple-touch-icon.png><link rel=manifest href=/site.webmanifest><link rel=mask-icon href=/images/safari-pinned-tab.svg color=#5bbad5></head><body class="preload-transitions colorscheme-auto"><div class=float-container><a id=dark-mode-toggle class=colorscheme-toggle><i class="fa-solid fa-adjust fa-fw" aria-hidden=true></i></a></div><main class=wrapper><nav class=navigation><section class=container><a class=navigation-title href=/>Eric X. Liu's Personal Page
1. The “Channel”: A Foundational View of d_model Link to heading In deep learning, a “channel” can be thought of as a feature dimension. While this term is common in Convolutional Neural Networks for images (e.g., Red, Green, Blue channels), in LLMs, the analogous concept is the models primary embedding dimension, commonly referred to as d_model."><meta property="og:locale" content="en"><meta property="og:type" content="article"><meta property="article:section" content="posts"><meta property="article:published_time" content="2025-04-01T00:00:00+00:00"><meta property="article:modified_time" content="2025-08-20T06:28:39+00:00"><link rel=canonical href=/posts/transformer-s-core-mechanics/><link rel=preload href=/fonts/fa-brands-400.woff2 as=font type=font/woff2 crossorigin><link rel=preload href=/fonts/fa-regular-400.woff2 as=font type=font/woff2 crossorigin><link rel=preload href=/fonts/fa-solid-900.woff2 as=font type=font/woff2 crossorigin><link rel=stylesheet href=/css/coder.min.6445a802b9389c9660e1b07b724dcf5718b1065ed2d71b4eeaf981cc7cc5fc46.css integrity="sha256-ZEWoArk4nJZg4bB7ck3PVxixBl7S1xtO6vmBzHzF/EY=" crossorigin=anonymous media=screen><link rel=stylesheet href=/css/coder-dark.min.a00e6364bacbc8266ad1cc81230774a1397198f8cfb7bcba29b7d6fcb54ce57f.css integrity="sha256-oA5jZLrLyCZq0cyBIwd0oTlxmPjPt7y6KbfW/LVM5X8=" crossorigin=anonymous media=screen><link rel=icon type=image/svg+xml href=/images/favicon.svg sizes=any><link rel=icon type=image/png href=/images/favicon-32x32.png sizes=32x32><link rel=icon type=image/png href=/images/favicon-16x16.png sizes=16x16><link rel=apple-touch-icon href=/images/apple-touch-icon.png><link rel=apple-touch-icon sizes=180x180 href=/images/apple-touch-icon.png><link rel=manifest href=/site.webmanifest><link rel=mask-icon href=/images/safari-pinned-tab.svg color=#5bbad5></head><body class="preload-transitions colorscheme-auto"><div class=float-container><a id=dark-mode-toggle class=colorscheme-toggle><i class="fa-solid fa-adjust fa-fw" aria-hidden=true></i></a></div><main class=wrapper><nav class=navigation><section class=container><a class=navigation-title href=/>Eric X. Liu's Personal Page
</a><input type=checkbox id=menu-toggle>
<label class="menu-button float-right" for=menu-toggle><i class="fa-solid fa-bars fa-fw" aria-hidden=true></i></label><ul class=navigation-list><li class=navigation-item><a class=navigation-link href=/posts/>Posts</a></li><li class=navigation-item><a class=navigation-link href=https://chat.ericxliu.me>Chat</a></li><li class=navigation-item><a class=navigation-link href=https://git.ericxliu.me/user/oauth2/Authenitk>Git</a></li><li class=navigation-item><a class=navigation-link href=https://coder.ericxliu.me/api/v2/users/oidc/callback>Coder</a></li><li class=navigation-item><a class=navigation-link href=/>|</a></li><li class=navigation-item><a class=navigation-link href=https://sso.ericxliu.me>Sign in</a></li></ul></section></nav><div class=content><section class="container post"><article><header><div class=post-title><h1 class=title><a class=title-link href=/posts/transformer-s-core-mechanics/>Transformer's Core Mechanics</a></h1></div><div class=post-meta><div class=date><span class=posted-on><i class="fa-solid fa-calendar" aria-hidden=true></i>
<time datetime=2025-08-19T00:00:00Z>August 19, 2025
<time datetime=2025-04-01T00:00:00Z>April 1, 2025
</time></span><span class=reading-time><i class="fa-solid fa-clock" aria-hidden=true></i>
7-minute read</span></div></div></header><div class=post-content><p>The Transformer architecture is the bedrock of modern Large Language Models (LLMs). While its high-level success is widely known, a deeper understanding requires dissecting its core components. This article provides a detailed, technical breakdown of the fundamental concepts within a Transformer block, from the notion of &ldquo;channels&rdquo; to the intricate workings of the attention mechanism and its relationship with other advanced architectures like Mixture of Experts.</p><h3 id=1-the-channel-a-foundational-view-of-d_model>1. The &ldquo;Channel&rdquo;: A Foundational View of <code>d_model</code>
<a class=heading-link href=#1-the-channel-a-foundational-view-of-d_model><i class="fa-solid fa-link" aria-hidden=true title="Link to heading"></i>
@@ -36,4 +36,4 @@ In deep learning, a &ldquo;channel&rdquo; can be thought of as a feature dimensi
2016 -
2025
Eric X. Liu
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/16732da">[16732da]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/69c2890">[69c2890]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>