deploy: 69c2890aad
This commit is contained in:
2
404.html
2
404.html
@@ -4,4 +4,4 @@
|
||||
2016 -
|
||||
2025
|
||||
Eric X. Liu
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/16732da">[16732da]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/69c2890">[69c2890]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
@@ -4,4 +4,4 @@
|
||||
2016 -
|
||||
2025
|
||||
Eric X. Liu
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/16732da">[16732da]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/69c2890">[69c2890]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
@@ -4,4 +4,4 @@
|
||||
2016 -
|
||||
2025
|
||||
Eric X. Liu
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/16732da">[16732da]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/69c2890">[69c2890]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
@@ -4,4 +4,4 @@
|
||||
2016 -
|
||||
2025
|
||||
Eric X. Liu
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/16732da">[16732da]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/69c2890">[69c2890]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
20
index.xml
20
index.xml
@@ -1,12 +1,4 @@
|
||||
<?xml version="1.0" encoding="utf-8" standalone="yes"?><rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom"><channel><title>Eric X. Liu's Personal Page</title><link>/</link><description>Recent content on Eric X. Liu's Personal Page</description><generator>Hugo</generator><language>en</language><lastBuildDate>Wed, 20 Aug 2025 06:04:36 +0000</lastBuildDate><atom:link href="/index.xml" rel="self" type="application/rss+xml"/><item><title>Quantization in LLMs</title><link>/posts/quantization-in-llms/</link><pubDate>Tue, 19 Aug 2025 00:00:00 +0000</pubDate><guid>/posts/quantization-in-llms/</guid><description><p>The burgeoning scale of Large Language Models (LLMs) has necessitated a paradigm shift in their deployment, moving beyond full-precision floating-point arithmetic towards lower-precision representations. Quantization, the process of mapping a wide range of continuous values to a smaller, discrete set, has emerged as a critical technique to reduce model size, accelerate inference, and lower energy consumption. This article provides a technical overview of quantization theories, their application in modern LLMs, and highlights the ongoing innovations in this domain.</p></description></item><item><title>Transformer's Core Mechanics</title><link>/posts/transformer-s-core-mechanics/</link><pubDate>Tue, 19 Aug 2025 00:00:00 +0000</pubDate><guid>/posts/transformer-s-core-mechanics/</guid><description><p>The Transformer architecture is the bedrock of modern Large Language Models (LLMs). While its high-level success is widely known, a deeper understanding requires dissecting its core components. This article provides a detailed, technical breakdown of the fundamental concepts within a Transformer block, from the notion of &ldquo;channels&rdquo; to the intricate workings of the attention mechanism and its relationship with other advanced architectures like Mixture of Experts.</p>
|
||||
<h3 id="1-the-channel-a-foundational-view-of-d_model">
|
||||
1. The &ldquo;Channel&rdquo;: A Foundational View of <code>d_model</code>
|
||||
<a class="heading-link" href="#1-the-channel-a-foundational-view-of-d_model">
|
||||
<i class="fa-solid fa-link" aria-hidden="true" title="Link to heading"></i>
|
||||
<span class="sr-only">Link to heading</span>
|
||||
</a>
|
||||
</h3>
|
||||
<p>In deep learning, a &ldquo;channel&rdquo; can be thought of as a feature dimension. While this term is common in Convolutional Neural Networks for images (e.g., Red, Green, Blue channels), in LLMs, the analogous concept is the model&rsquo;s primary embedding dimension, commonly referred to as <code>d_model</code>.</p></description></item><item><title>Breville Barista Pro Maintenance</title><link>/posts/breville-barista-pro-maintenance/</link><pubDate>Sat, 16 Aug 2025 00:00:00 +0000</pubDate><guid>/posts/breville-barista-pro-maintenance/</guid><description><p>Proper maintenance is critical for the longevity and performance of a Breville Barista Pro espresso machine. Consistent cleaning not only ensures the machine functions correctly but also directly impacts the quality of the espresso produced. This guide provides a detailed, technical breakdown of the essential maintenance routines, from automated cycles to daily upkeep.</p>
|
||||
<?xml version="1.0" encoding="utf-8" standalone="yes"?><rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom"><channel><title>Eric X. Liu's Personal Page</title><link>/</link><description>Recent content on Eric X. Liu's Personal Page</description><generator>Hugo</generator><language>en</language><lastBuildDate>Wed, 20 Aug 2025 06:28:39 +0000</lastBuildDate><atom:link href="/index.xml" rel="self" type="application/rss+xml"/><item><title>Quantization in LLMs</title><link>/posts/quantization-in-llms/</link><pubDate>Tue, 19 Aug 2025 00:00:00 +0000</pubDate><guid>/posts/quantization-in-llms/</guid><description><p>The burgeoning scale of Large Language Models (LLMs) has necessitated a paradigm shift in their deployment, moving beyond full-precision floating-point arithmetic towards lower-precision representations. Quantization, the process of mapping a wide range of continuous values to a smaller, discrete set, has emerged as a critical technique to reduce model size, accelerate inference, and lower energy consumption. This article provides a technical overview of quantization theories, their application in modern LLMs, and highlights the ongoing innovations in this domain.</p></description></item><item><title>Breville Barista Pro Maintenance</title><link>/posts/breville-barista-pro-maintenance/</link><pubDate>Sat, 16 Aug 2025 00:00:00 +0000</pubDate><guid>/posts/breville-barista-pro-maintenance/</guid><description><p>Proper maintenance is critical for the longevity and performance of a Breville Barista Pro espresso machine. Consistent cleaning not only ensures the machine functions correctly but also directly impacts the quality of the espresso produced. This guide provides a detailed, technical breakdown of the essential maintenance routines, from automated cycles to daily upkeep.</p>
|
||||
<h4 id="understanding-the-two-primary-maintenance-cycles">
|
||||
<strong>Understanding the Two Primary Maintenance Cycles</strong>
|
||||
<a class="heading-link" href="#understanding-the-two-primary-maintenance-cycles">
|
||||
@@ -33,6 +25,14 @@
|
||||
<p><strong>The Problem:</strong>
|
||||
Many routing mechanisms, especially &ldquo;Top-K routing,&rdquo; involve a discrete, hard selection process. A common function is <code>KeepTopK(v, k)</code>, which selects the top <code>k</code> scoring elements from a vector <code>v</code> and sets others to $-\infty$ or $0$.</p></description></item><item><title>An Architectural Deep Dive of T5</title><link>/posts/t5-the-transformer-that-zigged-when-others-zagged-an-architectural-deep-dive/</link><pubDate>Sun, 01 Jun 2025 00:00:00 +0000</pubDate><guid>/posts/t5-the-transformer-that-zigged-when-others-zagged-an-architectural-deep-dive/</guid><description><p>In the rapidly evolving landscape of Large Language Models, a few key architectures define the dominant paradigms. Today, the &ldquo;decoder-only&rdquo; model, popularized by the GPT series and its successors like LLaMA and Mistral, reigns supreme. These models are scaled to incredible sizes and excel at in-context learning.</p>
|
||||
<p>But to truly understand the field, we must look at the pivotal models that explored different paths. Google&rsquo;s T5, or <strong>Text-to-Text Transfer Transformer</strong>, stands out as one of the most influential. It didn&rsquo;t just introduce a new model; it proposed a new philosophy. This article dives deep into the architecture of T5, how it fundamentally differs from modern LLMs, and the lasting legacy of its unique design choices.</p></description></item><item><title>Mastering Your Breville Barista Pro: The Ultimate Guide to Dialing In Espresso</title><link>/posts/espresso-theory-application-a-guide-for-the-breville-barista-pro/</link><pubDate>Thu, 01 May 2025 00:00:00 +0000</pubDate><guid>/posts/espresso-theory-application-a-guide-for-the-breville-barista-pro/</guid><description><p>Are you ready to transform your home espresso game from good to genuinely great? The Breville Barista Pro is a fantastic machine, but unlocking its full potential requires understanding a few key principles. This guide will walk you through the systematic process of dialing in your espresso, ensuring every shot is delicious and repeatable.</p>
|
||||
<p>Our overarching philosophy is simple: <strong>isolate and change only one variable at a time.</strong> While numbers are crucial, your palate is the ultimate judge. Dose, ratio, and time are interconnected, but your <strong>grind size</strong> is your most powerful lever.</p></description></item><item><title>Some useful files</title><link>/posts/useful/</link><pubDate>Mon, 26 Oct 2020 04:14:43 +0000</pubDate><guid>/posts/useful/</guid><description><ul>
|
||||
<p>Our overarching philosophy is simple: <strong>isolate and change only one variable at a time.</strong> While numbers are crucial, your palate is the ultimate judge. Dose, ratio, and time are interconnected, but your <strong>grind size</strong> is your most powerful lever.</p></description></item><item><title>Transformer's Core Mechanics</title><link>/posts/transformer-s-core-mechanics/</link><pubDate>Tue, 01 Apr 2025 00:00:00 +0000</pubDate><guid>/posts/transformer-s-core-mechanics/</guid><description><p>The Transformer architecture is the bedrock of modern Large Language Models (LLMs). While its high-level success is widely known, a deeper understanding requires dissecting its core components. This article provides a detailed, technical breakdown of the fundamental concepts within a Transformer block, from the notion of &ldquo;channels&rdquo; to the intricate workings of the attention mechanism and its relationship with other advanced architectures like Mixture of Experts.</p>
|
||||
<h3 id="1-the-channel-a-foundational-view-of-d_model">
|
||||
1. The &ldquo;Channel&rdquo;: A Foundational View of <code>d_model</code>
|
||||
<a class="heading-link" href="#1-the-channel-a-foundational-view-of-d_model">
|
||||
<i class="fa-solid fa-link" aria-hidden="true" title="Link to heading"></i>
|
||||
<span class="sr-only">Link to heading</span>
|
||||
</a>
|
||||
</h3>
|
||||
<p>In deep learning, a &ldquo;channel&rdquo; can be thought of as a feature dimension. While this term is common in Convolutional Neural Networks for images (e.g., Red, Green, Blue channels), in LLMs, the analogous concept is the model&rsquo;s primary embedding dimension, commonly referred to as <code>d_model</code>.</p></description></item><item><title>Some useful files</title><link>/posts/useful/</link><pubDate>Mon, 26 Oct 2020 04:14:43 +0000</pubDate><guid>/posts/useful/</guid><description><ul>
|
||||
<li><a href="/rootCA.crt" >rootCA.pem</a></li>
|
||||
</ul></description></item><item><title>About</title><link>/about/</link><pubDate>Fri, 01 Jun 2018 07:13:52 +0000</pubDate><guid>/about/</guid><description/></item></channel></rss>
|
@@ -25,4 +25,4 @@ Understanding the Two Primary Maintenance Cycles Link to heading The Breville Ba
|
||||
2016 -
|
||||
2025
|
||||
Eric X. Liu
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/16732da">[16732da]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/69c2890">[69c2890]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
@@ -20,4 +20,4 @@ Our overarching philosophy is simple: isolate and change only one variable at a
|
||||
2016 -
|
||||
2025
|
||||
Eric X. Liu
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/16732da">[16732da]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/69c2890">[69c2890]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
@@ -18,4 +18,4 @@ The answer lies in creating a universal language—a bridge between the continuo
|
||||
2016 -
|
||||
2025
|
||||
Eric X. Liu
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/16732da">[16732da]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/69c2890">[69c2890]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
@@ -1,8 +1,7 @@
|
||||
<!doctype html><html lang=en><head><title>Posts · Eric X. Liu's Personal Page</title><meta charset=utf-8><meta name=viewport content="width=device-width,initial-scale=1"><meta name=color-scheme content="light dark"><meta name=author content="Eric X. Liu"><meta name=description content="Eric X. Liu - Software & Performance Engineer at Google. Sharing insights about software engineering, performance optimization, tech industry experiences, mountain biking adventures, Jeep overlanding, and outdoor activities."><meta name=keywords content="software engineer,performance engineering,Google engineer,tech blog,software development,performance optimization,Eric Liu,engineering blog,mountain biking,Jeep enthusiast,overlanding,camping,outdoor adventures"><meta name=twitter:card content="summary"><meta name=twitter:title content="Posts"><meta name=twitter:description content="Eric X. Liu - Software & Performance Engineer at Google. Sharing insights about software engineering, performance optimization, tech industry experiences, mountain biking adventures, Jeep overlanding, and outdoor activities."><meta property="og:url" content="/posts/"><meta property="og:site_name" content="Eric X. Liu's Personal Page"><meta property="og:title" content="Posts"><meta property="og:description" content="Eric X. Liu - Software & Performance Engineer at Google. Sharing insights about software engineering, performance optimization, tech industry experiences, mountain biking adventures, Jeep overlanding, and outdoor activities."><meta property="og:locale" content="en"><meta property="og:type" content="website"><link rel=canonical href=/posts/><link rel=preload href=/fonts/fa-brands-400.woff2 as=font type=font/woff2 crossorigin><link rel=preload href=/fonts/fa-regular-400.woff2 as=font type=font/woff2 crossorigin><link rel=preload href=/fonts/fa-solid-900.woff2 as=font type=font/woff2 crossorigin><link rel=stylesheet href=/css/coder.min.6445a802b9389c9660e1b07b724dcf5718b1065ed2d71b4eeaf981cc7cc5fc46.css integrity="sha256-ZEWoArk4nJZg4bB7ck3PVxixBl7S1xtO6vmBzHzF/EY=" crossorigin=anonymous media=screen><link rel=stylesheet href=/css/coder-dark.min.a00e6364bacbc8266ad1cc81230774a1397198f8cfb7bcba29b7d6fcb54ce57f.css integrity="sha256-oA5jZLrLyCZq0cyBIwd0oTlxmPjPt7y6KbfW/LVM5X8=" crossorigin=anonymous media=screen><link rel=icon type=image/svg+xml href=/images/favicon.svg sizes=any><link rel=icon type=image/png href=/images/favicon-32x32.png sizes=32x32><link rel=icon type=image/png href=/images/favicon-16x16.png sizes=16x16><link rel=apple-touch-icon href=/images/apple-touch-icon.png><link rel=apple-touch-icon sizes=180x180 href=/images/apple-touch-icon.png><link rel=manifest href=/site.webmanifest><link rel=mask-icon href=/images/safari-pinned-tab.svg color=#5bbad5><link rel=alternate type=application/rss+xml href=/posts/index.xml title="Eric X. Liu's Personal Page"></head><body class="preload-transitions colorscheme-auto"><div class=float-container><a id=dark-mode-toggle class=colorscheme-toggle><i class="fa-solid fa-adjust fa-fw" aria-hidden=true></i></a></div><main class=wrapper><nav class=navigation><section class=container><a class=navigation-title href=/>Eric X. Liu's Personal Page
|
||||
</a><input type=checkbox id=menu-toggle>
|
||||
<label class="menu-button float-right" for=menu-toggle><i class="fa-solid fa-bars fa-fw" aria-hidden=true></i></label><ul class=navigation-list><li class=navigation-item><a class=navigation-link href=/posts/>Posts</a></li><li class=navigation-item><a class=navigation-link href=https://chat.ericxliu.me>Chat</a></li><li class=navigation-item><a class=navigation-link href=https://git.ericxliu.me/user/oauth2/Authenitk>Git</a></li><li class=navigation-item><a class=navigation-link href=https://coder.ericxliu.me/api/v2/users/oidc/callback>Coder</a></li><li class=navigation-item><a class=navigation-link href=/>|</a></li><li class=navigation-item><a class=navigation-link href=https://sso.ericxliu.me>Sign in</a></li></ul></section></nav><div class=content><section class="container list"><header><h1 class=title><a class=title-link href=/posts/>Posts</a></h1></header><ul><li><span class=date>August 19, 2025</span>
|
||||
<a class=title href=/posts/quantization-in-llms/>Quantization in LLMs</a></li><li><span class=date>August 19, 2025</span>
|
||||
<a class=title href=/posts/transformer-s-core-mechanics/>Transformer's Core Mechanics</a></li><li><span class=date>August 16, 2025</span>
|
||||
<a class=title href=/posts/quantization-in-llms/>Quantization in LLMs</a></li><li><span class=date>August 16, 2025</span>
|
||||
<a class=title href=/posts/breville-barista-pro-maintenance/>Breville Barista Pro Maintenance</a></li><li><span class=date>August 9, 2025</span>
|
||||
<a class=title href=/posts/secure-boot-dkms-and-mok-on-proxmox-debian/>Fixing GPU Operator Pods Stuck in Init: Secure Boot, DKMS, and MOK on Proxmox + Debian</a></li><li><span class=date>August 7, 2025</span>
|
||||
<a class=title href=/posts/how-rvq-teaches-llms-to-see-and-hear/>Beyond Words: How RVQ Teaches LLMs to See and Hear</a></li><li><span class=date>August 3, 2025</span>
|
||||
@@ -10,8 +9,9 @@
|
||||
<a class=title href=/posts/ppo-for-language-models/>A Deep Dive into PPO for Language Models</a></li><li><span class=date>July 2, 2025</span>
|
||||
<a class=title href=/posts/mixture-of-experts-moe-models-challenges-solutions-in-practice/>Mixture-of-Experts (MoE) Models Challenges & Solutions in Practice</a></li><li><span class=date>June 1, 2025</span>
|
||||
<a class=title href=/posts/t5-the-transformer-that-zigged-when-others-zagged-an-architectural-deep-dive/>An Architectural Deep Dive of T5</a></li><li><span class=date>May 1, 2025</span>
|
||||
<a class=title href=/posts/espresso-theory-application-a-guide-for-the-breville-barista-pro/>Mastering Your Breville Barista Pro: The Ultimate Guide to Dialing In Espresso</a></li></ul><ul class=pagination><li>1</li><li><a href=/posts/page/2/>2</a></li><li class=hidden><a href=/posts/page/2/>›</a></li><li><a href=/posts/page/2/>»</a></li></ul></section></div><footer class=footer><section class=container>©
|
||||
<a class=title href=/posts/espresso-theory-application-a-guide-for-the-breville-barista-pro/>Mastering Your Breville Barista Pro: The Ultimate Guide to Dialing In Espresso</a></li><li><span class=date>April 1, 2025</span>
|
||||
<a class=title href=/posts/transformer-s-core-mechanics/>Transformer's Core Mechanics</a></li></ul><ul class=pagination><li>1</li><li><a href=/posts/page/2/>2</a></li><li class=hidden><a href=/posts/page/2/>›</a></li><li><a href=/posts/page/2/>»</a></li></ul></section></div><footer class=footer><section class=container>©
|
||||
2016 -
|
||||
2025
|
||||
Eric X. Liu
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/16732da">[16732da]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/69c2890">[69c2890]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
@@ -1,12 +1,4 @@
|
||||
<?xml version="1.0" encoding="utf-8" standalone="yes"?><rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom"><channel><title>Posts on Eric X. Liu's Personal Page</title><link>/posts/</link><description>Recent content in Posts on Eric X. Liu's Personal Page</description><generator>Hugo</generator><language>en</language><lastBuildDate>Wed, 20 Aug 2025 06:04:36 +0000</lastBuildDate><atom:link href="/posts/index.xml" rel="self" type="application/rss+xml"/><item><title>Quantization in LLMs</title><link>/posts/quantization-in-llms/</link><pubDate>Tue, 19 Aug 2025 00:00:00 +0000</pubDate><guid>/posts/quantization-in-llms/</guid><description><p>The burgeoning scale of Large Language Models (LLMs) has necessitated a paradigm shift in their deployment, moving beyond full-precision floating-point arithmetic towards lower-precision representations. Quantization, the process of mapping a wide range of continuous values to a smaller, discrete set, has emerged as a critical technique to reduce model size, accelerate inference, and lower energy consumption. This article provides a technical overview of quantization theories, their application in modern LLMs, and highlights the ongoing innovations in this domain.</p></description></item><item><title>Transformer's Core Mechanics</title><link>/posts/transformer-s-core-mechanics/</link><pubDate>Tue, 19 Aug 2025 00:00:00 +0000</pubDate><guid>/posts/transformer-s-core-mechanics/</guid><description><p>The Transformer architecture is the bedrock of modern Large Language Models (LLMs). While its high-level success is widely known, a deeper understanding requires dissecting its core components. This article provides a detailed, technical breakdown of the fundamental concepts within a Transformer block, from the notion of &ldquo;channels&rdquo; to the intricate workings of the attention mechanism and its relationship with other advanced architectures like Mixture of Experts.</p>
|
||||
<h3 id="1-the-channel-a-foundational-view-of-d_model">
|
||||
1. The &ldquo;Channel&rdquo;: A Foundational View of <code>d_model</code>
|
||||
<a class="heading-link" href="#1-the-channel-a-foundational-view-of-d_model">
|
||||
<i class="fa-solid fa-link" aria-hidden="true" title="Link to heading"></i>
|
||||
<span class="sr-only">Link to heading</span>
|
||||
</a>
|
||||
</h3>
|
||||
<p>In deep learning, a &ldquo;channel&rdquo; can be thought of as a feature dimension. While this term is common in Convolutional Neural Networks for images (e.g., Red, Green, Blue channels), in LLMs, the analogous concept is the model&rsquo;s primary embedding dimension, commonly referred to as <code>d_model</code>.</p></description></item><item><title>Breville Barista Pro Maintenance</title><link>/posts/breville-barista-pro-maintenance/</link><pubDate>Sat, 16 Aug 2025 00:00:00 +0000</pubDate><guid>/posts/breville-barista-pro-maintenance/</guid><description><p>Proper maintenance is critical for the longevity and performance of a Breville Barista Pro espresso machine. Consistent cleaning not only ensures the machine functions correctly but also directly impacts the quality of the espresso produced. This guide provides a detailed, technical breakdown of the essential maintenance routines, from automated cycles to daily upkeep.</p>
|
||||
<?xml version="1.0" encoding="utf-8" standalone="yes"?><rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom"><channel><title>Posts on Eric X. Liu's Personal Page</title><link>/posts/</link><description>Recent content in Posts on Eric X. Liu's Personal Page</description><generator>Hugo</generator><language>en</language><lastBuildDate>Wed, 20 Aug 2025 06:28:39 +0000</lastBuildDate><atom:link href="/posts/index.xml" rel="self" type="application/rss+xml"/><item><title>Quantization in LLMs</title><link>/posts/quantization-in-llms/</link><pubDate>Tue, 19 Aug 2025 00:00:00 +0000</pubDate><guid>/posts/quantization-in-llms/</guid><description><p>The burgeoning scale of Large Language Models (LLMs) has necessitated a paradigm shift in their deployment, moving beyond full-precision floating-point arithmetic towards lower-precision representations. Quantization, the process of mapping a wide range of continuous values to a smaller, discrete set, has emerged as a critical technique to reduce model size, accelerate inference, and lower energy consumption. This article provides a technical overview of quantization theories, their application in modern LLMs, and highlights the ongoing innovations in this domain.</p></description></item><item><title>Breville Barista Pro Maintenance</title><link>/posts/breville-barista-pro-maintenance/</link><pubDate>Sat, 16 Aug 2025 00:00:00 +0000</pubDate><guid>/posts/breville-barista-pro-maintenance/</guid><description><p>Proper maintenance is critical for the longevity and performance of a Breville Barista Pro espresso machine. Consistent cleaning not only ensures the machine functions correctly but also directly impacts the quality of the espresso produced. This guide provides a detailed, technical breakdown of the essential maintenance routines, from automated cycles to daily upkeep.</p>
|
||||
<h4 id="understanding-the-two-primary-maintenance-cycles">
|
||||
<strong>Understanding the Two Primary Maintenance Cycles</strong>
|
||||
<a class="heading-link" href="#understanding-the-two-primary-maintenance-cycles">
|
||||
@@ -33,6 +25,14 @@
|
||||
<p><strong>The Problem:</strong>
|
||||
Many routing mechanisms, especially &ldquo;Top-K routing,&rdquo; involve a discrete, hard selection process. A common function is <code>KeepTopK(v, k)</code>, which selects the top <code>k</code> scoring elements from a vector <code>v</code> and sets others to $-\infty$ or $0$.</p></description></item><item><title>An Architectural Deep Dive of T5</title><link>/posts/t5-the-transformer-that-zigged-when-others-zagged-an-architectural-deep-dive/</link><pubDate>Sun, 01 Jun 2025 00:00:00 +0000</pubDate><guid>/posts/t5-the-transformer-that-zigged-when-others-zagged-an-architectural-deep-dive/</guid><description><p>In the rapidly evolving landscape of Large Language Models, a few key architectures define the dominant paradigms. Today, the &ldquo;decoder-only&rdquo; model, popularized by the GPT series and its successors like LLaMA and Mistral, reigns supreme. These models are scaled to incredible sizes and excel at in-context learning.</p>
|
||||
<p>But to truly understand the field, we must look at the pivotal models that explored different paths. Google&rsquo;s T5, or <strong>Text-to-Text Transfer Transformer</strong>, stands out as one of the most influential. It didn&rsquo;t just introduce a new model; it proposed a new philosophy. This article dives deep into the architecture of T5, how it fundamentally differs from modern LLMs, and the lasting legacy of its unique design choices.</p></description></item><item><title>Mastering Your Breville Barista Pro: The Ultimate Guide to Dialing In Espresso</title><link>/posts/espresso-theory-application-a-guide-for-the-breville-barista-pro/</link><pubDate>Thu, 01 May 2025 00:00:00 +0000</pubDate><guid>/posts/espresso-theory-application-a-guide-for-the-breville-barista-pro/</guid><description><p>Are you ready to transform your home espresso game from good to genuinely great? The Breville Barista Pro is a fantastic machine, but unlocking its full potential requires understanding a few key principles. This guide will walk you through the systematic process of dialing in your espresso, ensuring every shot is delicious and repeatable.</p>
|
||||
<p>Our overarching philosophy is simple: <strong>isolate and change only one variable at a time.</strong> While numbers are crucial, your palate is the ultimate judge. Dose, ratio, and time are interconnected, but your <strong>grind size</strong> is your most powerful lever.</p></description></item><item><title>Some useful files</title><link>/posts/useful/</link><pubDate>Mon, 26 Oct 2020 04:14:43 +0000</pubDate><guid>/posts/useful/</guid><description><ul>
|
||||
<p>Our overarching philosophy is simple: <strong>isolate and change only one variable at a time.</strong> While numbers are crucial, your palate is the ultimate judge. Dose, ratio, and time are interconnected, but your <strong>grind size</strong> is your most powerful lever.</p></description></item><item><title>Transformer's Core Mechanics</title><link>/posts/transformer-s-core-mechanics/</link><pubDate>Tue, 01 Apr 2025 00:00:00 +0000</pubDate><guid>/posts/transformer-s-core-mechanics/</guid><description><p>The Transformer architecture is the bedrock of modern Large Language Models (LLMs). While its high-level success is widely known, a deeper understanding requires dissecting its core components. This article provides a detailed, technical breakdown of the fundamental concepts within a Transformer block, from the notion of &ldquo;channels&rdquo; to the intricate workings of the attention mechanism and its relationship with other advanced architectures like Mixture of Experts.</p>
|
||||
<h3 id="1-the-channel-a-foundational-view-of-d_model">
|
||||
1. The &ldquo;Channel&rdquo;: A Foundational View of <code>d_model</code>
|
||||
<a class="heading-link" href="#1-the-channel-a-foundational-view-of-d_model">
|
||||
<i class="fa-solid fa-link" aria-hidden="true" title="Link to heading"></i>
|
||||
<span class="sr-only">Link to heading</span>
|
||||
</a>
|
||||
</h3>
|
||||
<p>In deep learning, a &ldquo;channel&rdquo; can be thought of as a feature dimension. While this term is common in Convolutional Neural Networks for images (e.g., Red, Green, Blue channels), in LLMs, the analogous concept is the model&rsquo;s primary embedding dimension, commonly referred to as <code>d_model</code>.</p></description></item><item><title>Some useful files</title><link>/posts/useful/</link><pubDate>Mon, 26 Oct 2020 04:14:43 +0000</pubDate><guid>/posts/useful/</guid><description><ul>
|
||||
<li><a href="/rootCA.crt" >rootCA.pem</a></li>
|
||||
</ul></description></item></channel></rss>
|
@@ -44,4 +44,4 @@ The <strong>Top-K routing</strong> mechanism, as illustrated in the provided ima
|
||||
2016 -
|
||||
2025
|
||||
Eric X. Liu
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/16732da">[16732da]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/69c2890">[69c2890]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
@@ -5,4 +5,4 @@
|
||||
2016 -
|
||||
2025
|
||||
Eric X. Liu
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/16732da">[16732da]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/69c2890">[69c2890]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
@@ -23,4 +23,4 @@ where <code>δ_t = r_t + γV(s_{t+1}) - V(s_t)</code></p><ul><li><strong>γ (gam
|
||||
2016 -
|
||||
2025
|
||||
Eric X. Liu
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/16732da">[16732da]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/69c2890">[69c2890]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
@@ -7,4 +7,4 @@
|
||||
2016 -
|
||||
2025
|
||||
Eric X. Liu
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/16732da">[16732da]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/69c2890">[69c2890]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
@@ -59,4 +59,4 @@ nvidia-smi failed to communicate with the NVIDIA driver modprobe nvidia → “K
|
||||
2016 -
|
||||
2025
|
||||
Eric X. Liu
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/16732da">[16732da]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/69c2890">[69c2890]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
@@ -90,4 +90,4 @@ Supabase enters this space with a radically different philosophy: transparency.
|
||||
2016 -
|
||||
2025
|
||||
Eric X. Liu
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/16732da">[16732da]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/69c2890">[69c2890]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
@@ -30,4 +30,4 @@ But to truly understand the field, we must look at the pivotal models that explo
|
||||
2016 -
|
||||
2025
|
||||
Eric X. Liu
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/16732da">[16732da]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/69c2890">[69c2890]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
@@ -8,10 +8,10 @@
|
||||
|
||||
In deep learning, a “channel” can be thought of as a feature dimension. While this term is common in Convolutional Neural Networks for images (e.g., Red, Green, Blue channels), in LLMs, the analogous concept is the model’s primary embedding dimension, commonly referred to as d_model."><meta name=keywords content="software engineer,performance engineering,Google engineer,tech blog,software development,performance optimization,Eric Liu,engineering blog,mountain biking,Jeep enthusiast,overlanding,camping,outdoor adventures"><meta name=twitter:card content="summary"><meta name=twitter:title content="Transformer's Core Mechanics"><meta name=twitter:description content="The Transformer architecture is the bedrock of modern Large Language Models (LLMs). While its high-level success is widely known, a deeper understanding requires dissecting its core components. This article provides a detailed, technical breakdown of the fundamental concepts within a Transformer block, from the notion of “channels” to the intricate workings of the attention mechanism and its relationship with other advanced architectures like Mixture of Experts.
|
||||
1. The “Channel”: A Foundational View of d_model Link to heading In deep learning, a “channel” can be thought of as a feature dimension. While this term is common in Convolutional Neural Networks for images (e.g., Red, Green, Blue channels), in LLMs, the analogous concept is the model’s primary embedding dimension, commonly referred to as d_model."><meta property="og:url" content="/posts/transformer-s-core-mechanics/"><meta property="og:site_name" content="Eric X. Liu's Personal Page"><meta property="og:title" content="Transformer's Core Mechanics"><meta property="og:description" content="The Transformer architecture is the bedrock of modern Large Language Models (LLMs). While its high-level success is widely known, a deeper understanding requires dissecting its core components. This article provides a detailed, technical breakdown of the fundamental concepts within a Transformer block, from the notion of “channels” to the intricate workings of the attention mechanism and its relationship with other advanced architectures like Mixture of Experts.
|
||||
1. The “Channel”: A Foundational View of d_model Link to heading In deep learning, a “channel” can be thought of as a feature dimension. While this term is common in Convolutional Neural Networks for images (e.g., Red, Green, Blue channels), in LLMs, the analogous concept is the model’s primary embedding dimension, commonly referred to as d_model."><meta property="og:locale" content="en"><meta property="og:type" content="article"><meta property="article:section" content="posts"><meta property="article:published_time" content="2025-08-19T00:00:00+00:00"><meta property="article:modified_time" content="2025-08-20T06:04:36+00:00"><link rel=canonical href=/posts/transformer-s-core-mechanics/><link rel=preload href=/fonts/fa-brands-400.woff2 as=font type=font/woff2 crossorigin><link rel=preload href=/fonts/fa-regular-400.woff2 as=font type=font/woff2 crossorigin><link rel=preload href=/fonts/fa-solid-900.woff2 as=font type=font/woff2 crossorigin><link rel=stylesheet href=/css/coder.min.6445a802b9389c9660e1b07b724dcf5718b1065ed2d71b4eeaf981cc7cc5fc46.css integrity="sha256-ZEWoArk4nJZg4bB7ck3PVxixBl7S1xtO6vmBzHzF/EY=" crossorigin=anonymous media=screen><link rel=stylesheet href=/css/coder-dark.min.a00e6364bacbc8266ad1cc81230774a1397198f8cfb7bcba29b7d6fcb54ce57f.css integrity="sha256-oA5jZLrLyCZq0cyBIwd0oTlxmPjPt7y6KbfW/LVM5X8=" crossorigin=anonymous media=screen><link rel=icon type=image/svg+xml href=/images/favicon.svg sizes=any><link rel=icon type=image/png href=/images/favicon-32x32.png sizes=32x32><link rel=icon type=image/png href=/images/favicon-16x16.png sizes=16x16><link rel=apple-touch-icon href=/images/apple-touch-icon.png><link rel=apple-touch-icon sizes=180x180 href=/images/apple-touch-icon.png><link rel=manifest href=/site.webmanifest><link rel=mask-icon href=/images/safari-pinned-tab.svg color=#5bbad5></head><body class="preload-transitions colorscheme-auto"><div class=float-container><a id=dark-mode-toggle class=colorscheme-toggle><i class="fa-solid fa-adjust fa-fw" aria-hidden=true></i></a></div><main class=wrapper><nav class=navigation><section class=container><a class=navigation-title href=/>Eric X. Liu's Personal Page
|
||||
1. The “Channel”: A Foundational View of d_model Link to heading In deep learning, a “channel” can be thought of as a feature dimension. While this term is common in Convolutional Neural Networks for images (e.g., Red, Green, Blue channels), in LLMs, the analogous concept is the model’s primary embedding dimension, commonly referred to as d_model."><meta property="og:locale" content="en"><meta property="og:type" content="article"><meta property="article:section" content="posts"><meta property="article:published_time" content="2025-04-01T00:00:00+00:00"><meta property="article:modified_time" content="2025-08-20T06:28:39+00:00"><link rel=canonical href=/posts/transformer-s-core-mechanics/><link rel=preload href=/fonts/fa-brands-400.woff2 as=font type=font/woff2 crossorigin><link rel=preload href=/fonts/fa-regular-400.woff2 as=font type=font/woff2 crossorigin><link rel=preload href=/fonts/fa-solid-900.woff2 as=font type=font/woff2 crossorigin><link rel=stylesheet href=/css/coder.min.6445a802b9389c9660e1b07b724dcf5718b1065ed2d71b4eeaf981cc7cc5fc46.css integrity="sha256-ZEWoArk4nJZg4bB7ck3PVxixBl7S1xtO6vmBzHzF/EY=" crossorigin=anonymous media=screen><link rel=stylesheet href=/css/coder-dark.min.a00e6364bacbc8266ad1cc81230774a1397198f8cfb7bcba29b7d6fcb54ce57f.css integrity="sha256-oA5jZLrLyCZq0cyBIwd0oTlxmPjPt7y6KbfW/LVM5X8=" crossorigin=anonymous media=screen><link rel=icon type=image/svg+xml href=/images/favicon.svg sizes=any><link rel=icon type=image/png href=/images/favicon-32x32.png sizes=32x32><link rel=icon type=image/png href=/images/favicon-16x16.png sizes=16x16><link rel=apple-touch-icon href=/images/apple-touch-icon.png><link rel=apple-touch-icon sizes=180x180 href=/images/apple-touch-icon.png><link rel=manifest href=/site.webmanifest><link rel=mask-icon href=/images/safari-pinned-tab.svg color=#5bbad5></head><body class="preload-transitions colorscheme-auto"><div class=float-container><a id=dark-mode-toggle class=colorscheme-toggle><i class="fa-solid fa-adjust fa-fw" aria-hidden=true></i></a></div><main class=wrapper><nav class=navigation><section class=container><a class=navigation-title href=/>Eric X. Liu's Personal Page
|
||||
</a><input type=checkbox id=menu-toggle>
|
||||
<label class="menu-button float-right" for=menu-toggle><i class="fa-solid fa-bars fa-fw" aria-hidden=true></i></label><ul class=navigation-list><li class=navigation-item><a class=navigation-link href=/posts/>Posts</a></li><li class=navigation-item><a class=navigation-link href=https://chat.ericxliu.me>Chat</a></li><li class=navigation-item><a class=navigation-link href=https://git.ericxliu.me/user/oauth2/Authenitk>Git</a></li><li class=navigation-item><a class=navigation-link href=https://coder.ericxliu.me/api/v2/users/oidc/callback>Coder</a></li><li class=navigation-item><a class=navigation-link href=/>|</a></li><li class=navigation-item><a class=navigation-link href=https://sso.ericxliu.me>Sign in</a></li></ul></section></nav><div class=content><section class="container post"><article><header><div class=post-title><h1 class=title><a class=title-link href=/posts/transformer-s-core-mechanics/>Transformer's Core Mechanics</a></h1></div><div class=post-meta><div class=date><span class=posted-on><i class="fa-solid fa-calendar" aria-hidden=true></i>
|
||||
<time datetime=2025-08-19T00:00:00Z>August 19, 2025
|
||||
<time datetime=2025-04-01T00:00:00Z>April 1, 2025
|
||||
</time></span><span class=reading-time><i class="fa-solid fa-clock" aria-hidden=true></i>
|
||||
7-minute read</span></div></div></header><div class=post-content><p>The Transformer architecture is the bedrock of modern Large Language Models (LLMs). While its high-level success is widely known, a deeper understanding requires dissecting its core components. This article provides a detailed, technical breakdown of the fundamental concepts within a Transformer block, from the notion of “channels” to the intricate workings of the attention mechanism and its relationship with other advanced architectures like Mixture of Experts.</p><h3 id=1-the-channel-a-foundational-view-of-d_model>1. The “Channel”: A Foundational View of <code>d_model</code>
|
||||
<a class=heading-link href=#1-the-channel-a-foundational-view-of-d_model><i class="fa-solid fa-link" aria-hidden=true title="Link to heading"></i>
|
||||
@@ -36,4 +36,4 @@ In deep learning, a “channel” can be thought of as a feature dimensi
|
||||
2016 -
|
||||
2025
|
||||
Eric X. Liu
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/16732da">[16732da]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/69c2890">[69c2890]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
@@ -9,4 +9,4 @@ One-minute read</span></div></div></header><div class=post-content><ul><li><a hr
|
||||
2016 -
|
||||
2025
|
||||
Eric X. Liu
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/16732da">[16732da]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/69c2890">[69c2890]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
@@ -1 +1 @@
|
||||
<?xml version="1.0" encoding="utf-8" standalone="yes"?><urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9" xmlns:xhtml="http://www.w3.org/1999/xhtml"><url><loc>/</loc><lastmod>2025-08-20T06:04:36+00:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/posts/</loc><lastmod>2025-08-20T06:04:36+00:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/posts/quantization-in-llms/</loc><lastmod>2025-08-20T06:02:35+00:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/posts/transformer-s-core-mechanics/</loc><lastmod>2025-08-20T06:04:36+00:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/posts/breville-barista-pro-maintenance/</loc><lastmod>2025-08-20T06:04:36+00:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/posts/secure-boot-dkms-and-mok-on-proxmox-debian/</loc><lastmod>2025-08-14T06:50:22+00:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/posts/how-rvq-teaches-llms-to-see-and-hear/</loc><lastmod>2025-08-08T17:36:52+00:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/posts/supabase-deep-dive/</loc><lastmod>2025-08-04T03:59:37+00:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/posts/ppo-for-language-models/</loc><lastmod>2025-08-20T06:04:36+00:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/posts/mixture-of-experts-moe-models-challenges-solutions-in-practice/</loc><lastmod>2025-08-03T06:02:48+00:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/posts/t5-the-transformer-that-zigged-when-others-zagged-an-architectural-deep-dive/</loc><lastmod>2025-08-03T03:41:10+00:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/posts/espresso-theory-application-a-guide-for-the-breville-barista-pro/</loc><lastmod>2025-08-03T04:20:20+00:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/posts/useful/</loc><lastmod>2025-08-03T08:37:28-07:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/about/</loc><lastmod>2020-06-16T23:30:17-07:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/categories/</loc><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/tags/</loc><changefreq>weekly</changefreq><priority>0.5</priority></url></urlset>
|
||||
<?xml version="1.0" encoding="utf-8" standalone="yes"?><urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9" xmlns:xhtml="http://www.w3.org/1999/xhtml"><url><loc>/</loc><lastmod>2025-08-20T06:28:39+00:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/posts/</loc><lastmod>2025-08-20T06:28:39+00:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/posts/quantization-in-llms/</loc><lastmod>2025-08-20T06:02:35+00:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/posts/breville-barista-pro-maintenance/</loc><lastmod>2025-08-20T06:04:36+00:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/posts/secure-boot-dkms-and-mok-on-proxmox-debian/</loc><lastmod>2025-08-14T06:50:22+00:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/posts/how-rvq-teaches-llms-to-see-and-hear/</loc><lastmod>2025-08-08T17:36:52+00:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/posts/supabase-deep-dive/</loc><lastmod>2025-08-04T03:59:37+00:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/posts/ppo-for-language-models/</loc><lastmod>2025-08-20T06:04:36+00:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/posts/mixture-of-experts-moe-models-challenges-solutions-in-practice/</loc><lastmod>2025-08-03T06:02:48+00:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/posts/t5-the-transformer-that-zigged-when-others-zagged-an-architectural-deep-dive/</loc><lastmod>2025-08-03T03:41:10+00:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/posts/espresso-theory-application-a-guide-for-the-breville-barista-pro/</loc><lastmod>2025-08-03T04:20:20+00:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/posts/transformer-s-core-mechanics/</loc><lastmod>2025-08-20T06:28:39+00:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/posts/useful/</loc><lastmod>2025-08-03T08:37:28-07:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/about/</loc><lastmod>2020-06-16T23:30:17-07:00</lastmod><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/categories/</loc><changefreq>weekly</changefreq><priority>0.5</priority></url><url><loc>/tags/</loc><changefreq>weekly</changefreq><priority>0.5</priority></url></urlset>
|
@@ -4,4 +4,4 @@
|
||||
2016 -
|
||||
2025
|
||||
Eric X. Liu
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/16732da">[16732da]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/69c2890">[69c2890]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
Reference in New Issue
Block a user