This commit is contained in:
eric
2025-08-03 05:05:55 +00:00
parent 95df119b6d
commit 9efdd85826
19 changed files with 42 additions and 42 deletions

View File

@@ -7,9 +7,9 @@
The Problem:
Many routing mechanisms, especially &ldquo;Top-K routing,&rdquo; involve a discrete, hard selection process. A common function is KeepTopK(v, k), which selects the top k scoring elements from a vector v and sets others to (-\infty) or (0)."><meta name=keywords content="software engineer,performance engineering,Google engineer,tech blog,software development,performance optimization,Eric Liu,engineering blog,mountain biking,Jeep enthusiast,overlanding,camping,outdoor adventures"><meta name=fediverse:creator content><meta name=twitter:card content="summary"><meta name=twitter:title content="Mixture-of-Experts (MoE) Models Challenges & Solutions in Practice"><meta name=twitter:description content="Mixture-of-Experts (MoEs) are neural network architectures that allow different parts of the model (called “experts”) to specialize in different types of inputs. A “gating network” or “router” learns to dispatch each input (or “token”) to a subset of these experts. While powerful for scaling models, MoEs introduce several practical challenges.
Many routing mechanisms, especially &ldquo;Top-K routing,&rdquo; involve a discrete, hard selection process. A common function is KeepTopK(v, k), which selects the top k scoring elements from a vector v and sets others to (-\infty) or (0)."><meta name=keywords content="software engineer,performance engineering,Google engineer,tech blog,software development,performance optimization,Eric Liu,engineering blog,mountain biking,Jeep enthusiast,overlanding,camping,outdoor adventures"><meta name=twitter:card content="summary"><meta name=twitter:title content="Mixture-of-Experts (MoE) Models Challenges & Solutions in Practice"><meta name=twitter:description content="Mixture-of-Experts (MoEs) are neural network architectures that allow different parts of the model (called “experts”) to specialize in different types of inputs. A “gating network” or “router” learns to dispatch each input (or “token”) to a subset of these experts. While powerful for scaling models, MoEs introduce several practical challenges.
1. Challenge: Non-Differentiability of Routing Functions Link to heading The Problem: Many routing mechanisms, especially “Top-K routing,” involve a discrete, hard selection process. A common function is KeepTopK(v, k), which selects the top k scoring elements from a vector v and sets others to (-\infty) or (0)."><meta property="og:url" content="/posts/mixture-of-experts-moe-models-challenges-solutions-in-practice/"><meta property="og:site_name" content="Eric X. Liu's Personal Page"><meta property="og:title" content="Mixture-of-Experts (MoE) Models Challenges & Solutions in Practice"><meta property="og:description" content="Mixture-of-Experts (MoEs) are neural network architectures that allow different parts of the model (called “experts”) to specialize in different types of inputs. A “gating network” or “router” learns to dispatch each input (or “token”) to a subset of these experts. While powerful for scaling models, MoEs introduce several practical challenges.
1. Challenge: Non-Differentiability of Routing Functions Link to heading The Problem: Many routing mechanisms, especially “Top-K routing,” involve a discrete, hard selection process. A common function is KeepTopK(v, k), which selects the top k scoring elements from a vector v and sets others to (-\infty) or (0)."><meta property="og:locale" content="en"><meta property="og:type" content="article"><meta property="article:section" content="posts"><meta property="article:published_time" content="2025-07-02T00:00:00+00:00"><meta property="article:modified_time" content="2025-08-03T03:49:59+00:00"><link rel=canonical href=/posts/mixture-of-experts-moe-models-challenges-solutions-in-practice/><link rel=preload href=/fonts/fa-brands-400.woff2 as=font type=font/woff2 crossorigin><link rel=preload href=/fonts/fa-regular-400.woff2 as=font type=font/woff2 crossorigin><link rel=preload href=/fonts/fa-solid-900.woff2 as=font type=font/woff2 crossorigin><link rel=stylesheet href=/css/coder.min.60f552a2c0452fcc0254c54f21c3e0728460c1ae85f97a9c35833a222ef8b884.css integrity="sha256-YPVSosBFL8wCVMVPIcPgcoRgwa6F+XqcNYM6Ii74uIQ=" crossorigin=anonymous media=screen><link rel=stylesheet href=/css/coder-dark.min.a00e6364bacbc8266ad1cc81230774a1397198f8cfb7bcba29b7d6fcb54ce57f.css integrity="sha256-oA5jZLrLyCZq0cyBIwd0oTlxmPjPt7y6KbfW/LVM5X8=" crossorigin=anonymous media=screen><link rel=icon type=image/svg+xml href=/images/favicon.svg sizes=any><link rel=icon type=image/png href=/images/favicon-32x32.png sizes=32x32><link rel=icon type=image/png href=/images/favicon-16x16.png sizes=16x16><link rel=apple-touch-icon href=/images/apple-touch-icon.png><link rel=apple-touch-icon sizes=180x180 href=/images/apple-touch-icon.png><link rel=manifest href=/site.webmanifest><link rel=mask-icon href=/images/safari-pinned-tab.svg color=#5bbad5></head><body class="preload-transitions colorscheme-auto"><div class=float-container><a id=dark-mode-toggle class=colorscheme-toggle><i class="fa-solid fa-adjust fa-fw" aria-hidden=true></i></a></div><main class=wrapper><nav class=navigation><section class=container><a class=navigation-title href=/>Eric X. Liu's Personal Page
1. Challenge: Non-Differentiability of Routing Functions Link to heading The Problem: Many routing mechanisms, especially “Top-K routing,” involve a discrete, hard selection process. A common function is KeepTopK(v, k), which selects the top k scoring elements from a vector v and sets others to (-\infty) or (0)."><meta property="og:locale" content="en"><meta property="og:type" content="article"><meta property="article:section" content="posts"><meta property="article:published_time" content="2025-07-02T00:00:00+00:00"><meta property="article:modified_time" content="2025-08-03T03:49:59+00:00"><link rel=canonical href=/posts/mixture-of-experts-moe-models-challenges-solutions-in-practice/><link rel=preload href=/fonts/fa-brands-400.woff2 as=font type=font/woff2 crossorigin><link rel=preload href=/fonts/fa-regular-400.woff2 as=font type=font/woff2 crossorigin><link rel=preload href=/fonts/fa-solid-900.woff2 as=font type=font/woff2 crossorigin><link rel=stylesheet href=/css/coder.min.6445a802b9389c9660e1b07b724dcf5718b1065ed2d71b4eeaf981cc7cc5fc46.css integrity="sha256-ZEWoArk4nJZg4bB7ck3PVxixBl7S1xtO6vmBzHzF/EY=" crossorigin=anonymous media=screen><link rel=stylesheet href=/css/coder-dark.min.a00e6364bacbc8266ad1cc81230774a1397198f8cfb7bcba29b7d6fcb54ce57f.css integrity="sha256-oA5jZLrLyCZq0cyBIwd0oTlxmPjPt7y6KbfW/LVM5X8=" crossorigin=anonymous media=screen><link rel=icon type=image/svg+xml href=/images/favicon.svg sizes=any><link rel=icon type=image/png href=/images/favicon-32x32.png sizes=32x32><link rel=icon type=image/png href=/images/favicon-16x16.png sizes=16x16><link rel=apple-touch-icon href=/images/apple-touch-icon.png><link rel=apple-touch-icon sizes=180x180 href=/images/apple-touch-icon.png><link rel=manifest href=/site.webmanifest><link rel=mask-icon href=/images/safari-pinned-tab.svg color=#5bbad5></head><body class="preload-transitions colorscheme-auto"><div class=float-container><a id=dark-mode-toggle class=colorscheme-toggle><i class="fa-solid fa-adjust fa-fw" aria-hidden=true></i></a></div><main class=wrapper><nav class=navigation><section class=container><a class=navigation-title href=/>Eric X. Liu's Personal Page
</a><input type=checkbox id=menu-toggle>
<label class="menu-button float-right" for=menu-toggle><i class="fa-solid fa-bars fa-fw" aria-hidden=true></i></label><ul class=navigation-list><li class=navigation-item><a class=navigation-link href=/posts/>Posts</a></li><li class=navigation-item><a class=navigation-link href=https://chat.ericxliu.me>Chat</a></li><li class=navigation-item><a class=navigation-link href=https://git.ericxliu.me/user/oauth2/Authenitk>Git</a></li><li class=navigation-item><a class=navigation-link href=https://coder.ericxliu.me/api/v2/users/oidc/callback>Coder</a></li><li class=navigation-item><a class=navigation-link href=https://rss.ericxliu.me/oauth2/oidc/redirect>RSS</a></li><li class=navigation-item><a class=navigation-link href=/>|</a></li><li class=navigation-item><a class=navigation-link href=https://sso.ericxliu.me>Sign in</a></li></ul></section></nav><div class=content><section class="container post"><article><header><div class=post-title><h1 class=title><a class=title-link href=/posts/mixture-of-experts-moe-models-challenges-solutions-in-practice/>Mixture-of-Experts (MoE) Models Challenges & Solutions in Practice</a></h1></div><div class=post-meta><div class=date><span class=posted-on><i class="fa-solid fa-calendar" aria-hidden=true></i>
<time datetime=2025-07-02T00:00:00Z>July 2, 2025
@@ -40,8 +40,8 @@ Even with this loss, an expert can remain imbalanced if it&rsquo;s consistently
<span class=sr-only>Link to heading</span></a></h3><p><strong>The Problem:</strong>
Sparse MoE models, despite only activating a few experts per token, possess a very large total number of parameters. When fine-tuning these models on <strong>smaller datasets</strong>, they are highly prone to <strong>overfitting</strong>. The model&rsquo;s vast capacity allows it to memorize the limited fine-tuning data, leading to poor generalization performance on unseen validation data. This is evident when training loss continues to decrease, but validation loss stagnates or increases.</p><p><strong>Solutions:</strong></p><ul><li><p><strong>Zoph et al. Solution Fine-tune non-MoE MLPs:</strong></p><ul><li>This strategy involves freezing a portion of the MoE model&rsquo;s parameters during fine-tuning, specifically the large expert weights.</li><li>Instead, only the &ldquo;non-MoE&rdquo; parameters (e.g., attention layers, adapter layers, or the gating network itself) are updated.</li><li>This reduces the effective number of trainable parameters during fine-tuning, thereby mitigating the risk of overfitting on small datasets. It assumes the experts are already well-pre-trained for general tasks.</li></ul></li><li><p><strong>DeepSeek Solution Use Lots of Data (1.4M SFT):</strong></p><ul><li>This approach tackles the problem by providing the model with a very large and diverse dataset for Supervised Fine-Tuning (SFT).</li><li>With abundant data (e.g., 1.4 million examples covering a wide range of tasks and languages), the model&rsquo;s large capacity can be effectively utilized for specialized learning rather than memorization. The diversity and volume of data prevent individual experts from overfitting to specific examples.</li></ul></li></ul><p><strong>Conclusion:</strong>
MoE models offer significant advantages in terms of model capacity and computational efficiency, but their unique sparse activation pattern introduces challenges in training and fine-tuning. Overcoming non-differentiability in routing and ensuring balanced expert utilization are crucial for effective pre-training. During fine-tuning, managing the model&rsquo;s vast parameter count to prevent overfitting on smaller datasets requires either strategic parameter freezing or access to very large and diverse fine-tuning data.
The <strong>Top-K routing</strong> mechanism, as illustrated in the provided image, is a core component in many modern Mixture-of-Experts (MoE) models. It involves selecting a fixed number (<code>K</code>) of experts for each input based on relevance scores.</p><hr><p><strong>Traditional Top-K (Deterministic Selection):</strong></p><ul><li><strong>How it works:</strong><ol><li>Calculate relevance scores (<code>s_{i,t}</code>) for each expert <code>i</code> and input <code>t</code>.</li><li>Identify the <code>K</code> experts with the highest scores.</li><li>Experts <em>within</em> the Top-K are assigned their scores (<code>g_{i,t} = s_{i,t}</code>).</li><li>Experts <em>outside</em> the Top-K are assigned a score of <code>0</code> (<code>g_{i,t} = 0</code>).</li><li>The output is a weighted sum of the selected experts&rsquo; outputs.</li></ol></li><li><strong>Pros:</strong> Predictable, deterministic, selects the &ldquo;best&rdquo; experts based on current scores.</li><li><strong>Cons:</strong> Can lead to expert imbalance, where a few popular experts are always chosen, starving others of training.</li></ul><p><strong>Alternative: Sampling from Softmax (Probabilistic Selection):</strong></p><ul><li><strong>How it works:</strong><ol><li>Calculate relevance scores (<code>s_{i,t}</code>) which are treated as probabilities (after softmax).</li><li><strong>Randomly sample</strong> <code>K</code> unique expert indices from the distribution defined by these probabilities.</li><li>Selected experts contribute; unselected experts do not.</li></ol></li><li><strong>Why it&rsquo;s suggested:</strong><ul><li><strong>Load Balancing:</strong> Prevents expert collapse by ensuring all experts get a chance to be selected, even those with slightly lower scores. This promotes more even training across the entire expert pool.</li><li><strong>Diversity & Exploration:</strong> Introduces randomness, potentially leading to better generalization and robustness by exploring different expert combinations.</li></ul></li><li><strong>Pros:</strong> Better load balancing, prevents expert starvation, encourages exploration.</li><li><strong>Cons:</strong> Stochastic (non-deterministic routing), can make debugging harder, might not pick the absolute &ldquo;best&rdquo; expert in a single instance (but better for long-term training).</li></ul><p><strong>Key Takeaway:</strong> While deterministic Top-K is simpler and directly picks the &ldquo;highest-scoring&rdquo; experts, sampling from the softmax offers a more robust training dynamic by ensuring that all experts receive training data, thereby preventing some experts from becoming unused (&ldquo;dead experts&rdquo;).</p><hr></div><footer></footer></article></section></div><footer class=footer><section class=container>©
The <strong>Top-K routing</strong> mechanism, as illustrated in the provided image, is a core component in many modern Mixture-of-Experts (MoE) models. It involves selecting a fixed number (<code>K</code>) of experts for each input based on relevance scores.</p><hr><p><strong>Traditional Top-K (Deterministic Selection):</strong></p><ul><li><strong>How it works:</strong><ol><li>Calculate relevance scores (<code>s_{i,t}</code>) for each expert <code>i</code> and input <code>t</code>.</li><li>Identify the <code>K</code> experts with the highest scores.</li><li>Experts <em>within</em> the Top-K are assigned their scores (<code>g_{i,t} = s_{i,t}</code>).</li><li>Experts <em>outside</em> the Top-K are assigned a score of <code>0</code> (<code>g_{i,t} = 0</code>).</li><li>The output is a weighted sum of the selected experts&rsquo; outputs.</li></ol></li><li><strong>Pros:</strong> Predictable, deterministic, selects the &ldquo;best&rdquo; experts based on current scores.</li><li><strong>Cons:</strong> Can lead to expert imbalance, where a few popular experts are always chosen, starving others of training.</li></ul><p><strong>Alternative: Sampling from Softmax (Probabilistic Selection):</strong></p><ul><li><strong>How it works:</strong><ol><li>Calculate relevance scores (<code>s_{i,t}</code>) which are treated as probabilities (after softmax).</li><li><strong>Randomly sample</strong> <code>K</code> unique expert indices from the distribution defined by these probabilities.</li><li>Selected experts contribute; unselected experts do not.</li></ol></li><li><strong>Why it&rsquo;s suggested:</strong><ul><li><strong>Load Balancing:</strong> Prevents expert collapse by ensuring all experts get a chance to be selected, even those with slightly lower scores. This promotes more even training across the entire expert pool.</li><li><strong>Diversity & Exploration:</strong> Introduces randomness, potentially leading to better generalization and robustness by exploring different expert combinations.</li></ul></li><li><strong>Pros:</strong> Better load balancing, prevents expert starvation, encourages exploration.</li><li><strong>Cons:</strong> Stochastic (non-deterministic routing), can make debugging harder, might not pick the absolute &ldquo;best&rdquo; expert in a single instance (but better for long-term training).</li></ul><p><strong>Key Takeaway:</strong> While deterministic Top-K is simpler and directly picks the &ldquo;highest-scoring&rdquo; experts, sampling from the softmax offers a more robust training dynamic by ensuring that all experts receive training data, thereby preventing some experts from becoming unused (&ldquo;dead experts&rdquo;).</p><hr></div><footer><div id=disqus_thread></div><script>window.disqus_config=function(){},function(){if(["localhost","127.0.0.1"].indexOf(window.location.hostname)!=-1){document.getElementById("disqus_thread").innerHTML="Disqus comments not available by default when the website is previewed locally.";return}var t=document,e=t.createElement("script");e.async=!0,e.src="//ericxliu-me.disqus.com/embed.js",e.setAttribute("data-timestamp",+new Date),(t.head||t.body).appendChild(e)}(),document.addEventListener("themeChanged",function(){document.readyState=="complete"&&DISQUS.reset({reload:!0,config:disqus_config})})</script></footer></article></section></div><footer class=footer><section class=container>©
2016 -
2025
Eric X. Liu
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/fd19c59">[fd19c59]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script></body></html>
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/b4cc012">[b4cc012]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script></body></html>