5 lines
1.8 KiB
XML
5 lines
1.8 KiB
XML
<?xml version="1.0" encoding="utf-8" standalone="yes"?><rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom"><channel><title>Posts on Eric X. Liu's Personal Page</title><link>/posts/</link><description>Recent content in Posts on Eric X. Liu's Personal Page</description><generator>Hugo</generator><language>en</language><lastBuildDate>Sat, 02 Aug 2025 15:46:24 -0700</lastBuildDate><atom:link href="/posts/index.xml" rel="self" type="application/rss+xml"/><item><title>Some useful files</title><link>/posts/useful/</link><pubDate>Mon, 26 Oct 2020 04:14:43 +0000</pubDate><guid>/posts/useful/</guid><description><ul>
|
|
<li><a href="https://ericxliu.me/rootCA.pem" class="external-link" target="_blank" rel="noopener">rootCA.pem</a></li>
|
|
<li><a href="https://ericxliu.me/vpnclient.ovpn" class="external-link" target="_blank" rel="noopener">vpnclient.ovpn</a></li>
|
|
</ul></description></item><item><title/><link>/posts/a-deep-dive-into-ppo-for-language-models/</link><pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate><guid>/posts/a-deep-dive-into-ppo-for-language-models/</guid><description><p>Large Language Models (LLMs) have demonstrated astonishing capabilities, but out-of-the-box, they are simply powerful text predictors. They don&rsquo;t inherently understand what makes a response helpful, harmless, or aligned with human values. The technique that has proven most effective at bridging this gap is Reinforcement Learning from Human Feedback (RLHF), and at its heart lies a powerful algorithm: Proximal Policy Optimization (PPO).</p>
|
|
<p>You may have seen diagrams like the one below, which outlines the RLHF training process. It can look intimidating, with a web of interconnected models, losses, and data flows.</p></description></item></channel></rss> |