deploy: b213faf97d
This commit is contained in:
@@ -1,10 +1,10 @@
|
||||
<!doctype html><html lang=en><head><title>A Deep Dive into PPO for Language Models · Eric X. Liu's Personal Page</title><meta charset=utf-8><meta name=viewport content="width=device-width,initial-scale=1"><meta name=color-scheme content="light dark"><meta name=author content="Eric X. Liu"><meta name=description content="Large Language Models (LLMs) have demonstrated astonishing capabilities, but out-of-the-box, they are simply powerful text predictors. They don’t inherently understand what makes a response helpful, harmless, or aligned with human values. The technique that has proven most effective at bridging this gap is Reinforcement Learning from Human Feedback (RLHF), and at its heart lies a powerful algorithm: Proximal Policy Optimization (PPO).
|
||||
You may have seen diagrams like the one below, which outlines the RLHF training process. It can look intimidating, with a web of interconnected models, losses, and data flows."><meta name=keywords content="software engineer,performance engineering,Google engineer,tech blog,software development,performance optimization,Eric Liu,engineering blog,mountain biking,Jeep enthusiast,overlanding,camping,outdoor adventures"><meta name=fediverse:creator content><meta name=twitter:card content="summary"><meta name=twitter:title content="A Deep Dive into PPO for Language Models"><meta name=twitter:description content="Large Language Models (LLMs) have demonstrated astonishing capabilities, but out-of-the-box, they are simply powerful text predictors. They don’t inherently understand what makes a response helpful, harmless, or aligned with human values. The technique that has proven most effective at bridging this gap is Reinforcement Learning from Human Feedback (RLHF), and at its heart lies a powerful algorithm: Proximal Policy Optimization (PPO).
|
||||
You may have seen diagrams like the one below, which outlines the RLHF training process. It can look intimidating, with a web of interconnected models, losses, and data flows."><meta property="og:url" content="/posts/a-deep-dive-into-ppo-for-language-models/"><meta property="og:site_name" content="Eric X. Liu's Personal Page"><meta property="og:title" content="A Deep Dive into PPO for Language Models"><meta property="og:description" content="Large Language Models (LLMs) have demonstrated astonishing capabilities, but out-of-the-box, they are simply powerful text predictors. They don’t inherently understand what makes a response helpful, harmless, or aligned with human values. The technique that has proven most effective at bridging this gap is Reinforcement Learning from Human Feedback (RLHF), and at its heart lies a powerful algorithm: Proximal Policy Optimization (PPO).
|
||||
You may have seen diagrams like the one below, which outlines the RLHF training process. It can look intimidating, with a web of interconnected models, losses, and data flows."><meta property="og:locale" content="en"><meta property="og:type" content="article"><meta property="article:section" content="posts"><meta property="article:published_time" content="2025-08-03T03:01:53+00:00"><meta property="article:modified_time" content="2025-08-03T03:02:23+00:00"><link rel=canonical href=/posts/a-deep-dive-into-ppo-for-language-models/><link rel=preload href=/fonts/fa-brands-400.woff2 as=font type=font/woff2 crossorigin><link rel=preload href=/fonts/fa-regular-400.woff2 as=font type=font/woff2 crossorigin><link rel=preload href=/fonts/fa-solid-900.woff2 as=font type=font/woff2 crossorigin><link rel=stylesheet href=/css/coder.min.60f552a2c0452fcc0254c54f21c3e0728460c1ae85f97a9c35833a222ef8b884.css integrity="sha256-YPVSosBFL8wCVMVPIcPgcoRgwa6F+XqcNYM6Ii74uIQ=" crossorigin=anonymous media=screen><link rel=stylesheet href=/css/coder-dark.min.a00e6364bacbc8266ad1cc81230774a1397198f8cfb7bcba29b7d6fcb54ce57f.css integrity="sha256-oA5jZLrLyCZq0cyBIwd0oTlxmPjPt7y6KbfW/LVM5X8=" crossorigin=anonymous media=screen><link rel=icon type=image/svg+xml href=/images/favicon.svg sizes=any><link rel=icon type=image/png href=/images/favicon-32x32.png sizes=32x32><link rel=icon type=image/png href=/images/favicon-16x16.png sizes=16x16><link rel=apple-touch-icon href=/images/apple-touch-icon.png><link rel=apple-touch-icon sizes=180x180 href=/images/apple-touch-icon.png><link rel=manifest href=/site.webmanifest><link rel=mask-icon href=/images/safari-pinned-tab.svg color=#5bbad5></head><body class="preload-transitions colorscheme-auto"><div class=float-container><a id=dark-mode-toggle class=colorscheme-toggle><i class="fa-solid fa-adjust fa-fw" aria-hidden=true></i></a></div><main class=wrapper><nav class=navigation><section class=container><a class=navigation-title href=/>Eric X. Liu's Personal Page
|
||||
You may have seen diagrams like the one below, which outlines the RLHF training process. It can look intimidating, with a web of interconnected models, losses, and data flows."><meta property="og:locale" content="en"><meta property="og:type" content="article"><meta property="article:section" content="posts"><meta property="article:published_time" content="2025-08-03T03:07:50+00:00"><meta property="article:modified_time" content="2025-08-03T03:08:20+00:00"><link rel=canonical href=/posts/a-deep-dive-into-ppo-for-language-models/><link rel=preload href=/fonts/fa-brands-400.woff2 as=font type=font/woff2 crossorigin><link rel=preload href=/fonts/fa-regular-400.woff2 as=font type=font/woff2 crossorigin><link rel=preload href=/fonts/fa-solid-900.woff2 as=font type=font/woff2 crossorigin><link rel=stylesheet href=/css/coder.min.60f552a2c0452fcc0254c54f21c3e0728460c1ae85f97a9c35833a222ef8b884.css integrity="sha256-YPVSosBFL8wCVMVPIcPgcoRgwa6F+XqcNYM6Ii74uIQ=" crossorigin=anonymous media=screen><link rel=stylesheet href=/css/coder-dark.min.a00e6364bacbc8266ad1cc81230774a1397198f8cfb7bcba29b7d6fcb54ce57f.css integrity="sha256-oA5jZLrLyCZq0cyBIwd0oTlxmPjPt7y6KbfW/LVM5X8=" crossorigin=anonymous media=screen><link rel=icon type=image/svg+xml href=/images/favicon.svg sizes=any><link rel=icon type=image/png href=/images/favicon-32x32.png sizes=32x32><link rel=icon type=image/png href=/images/favicon-16x16.png sizes=16x16><link rel=apple-touch-icon href=/images/apple-touch-icon.png><link rel=apple-touch-icon sizes=180x180 href=/images/apple-touch-icon.png><link rel=manifest href=/site.webmanifest><link rel=mask-icon href=/images/safari-pinned-tab.svg color=#5bbad5></head><body class="preload-transitions colorscheme-auto"><div class=float-container><a id=dark-mode-toggle class=colorscheme-toggle><i class="fa-solid fa-adjust fa-fw" aria-hidden=true></i></a></div><main class=wrapper><nav class=navigation><section class=container><a class=navigation-title href=/>Eric X. Liu's Personal Page
|
||||
</a><input type=checkbox id=menu-toggle>
|
||||
<label class="menu-button float-right" for=menu-toggle><i class="fa-solid fa-bars fa-fw" aria-hidden=true></i></label><ul class=navigation-list><li class=navigation-item><a class=navigation-link href=/posts/>Posts</a></li><li class=navigation-item><a class=navigation-link href=https://chat.ericxliu.me>Chat</a></li><li class=navigation-item><a class=navigation-link href=https://git.ericxliu.me/user/oauth2/Authenitk>Git</a></li><li class=navigation-item><a class=navigation-link href=https://coder.ericxliu.me/api/v2/users/oidc/callback>Coder</a></li><li class=navigation-item><a class=navigation-link href=https://rss.ericxliu.me/oauth2/oidc/redirect>RSS</a></li><li class=navigation-item><a class=navigation-link href=/>|</a></li><li class=navigation-item><a class=navigation-link href=https://sso.ericxliu.me>Sign in</a></li></ul></section></nav><div class=content><section class="container post"><article><header><div class=post-title><h1 class=title><a class=title-link href=/posts/a-deep-dive-into-ppo-for-language-models/>A Deep Dive into PPO for Language Models</a></h1></div><div class=post-meta><div class=date><span class=posted-on><i class="fa-solid fa-calendar" aria-hidden=true></i>
|
||||
<time datetime=2025-08-03T03:01:53Z>August 3, 2025
|
||||
<time datetime=2025-08-03T03:07:50Z>August 3, 2025
|
||||
</time></span><span class=reading-time><i class="fa-solid fa-clock" aria-hidden=true></i>
|
||||
7-minute read</span></div></div></header><div class=post-content><p>Large Language Models (LLMs) have demonstrated astonishing capabilities, but out-of-the-box, they are simply powerful text predictors. They don’t inherently understand what makes a response helpful, harmless, or aligned with human values. The technique that has proven most effective at bridging this gap is Reinforcement Learning from Human Feedback (RLHF), and at its heart lies a powerful algorithm: Proximal Policy Optimization (PPO).</p><p>You may have seen diagrams like the one below, which outlines the RLHF training process. It can look intimidating, with a web of interconnected models, losses, and data flows.</p><p><img src=/images/a-deep-dive-into-ppo-for-language-models/.png alt></p><p>This post will decode that diagram, piece by piece. We’ll explore the “why” behind each component, moving from high-level concepts to the deep technical reasoning that makes this process work.</p><h3 id=translating-rl-to-a-conversation>Translating RL to a Conversation
|
||||
<a class=heading-link href=#translating-rl-to-a-conversation><i class="fa-solid fa-link" aria-hidden=true title="Link to heading"></i>
|
||||
@@ -23,4 +23,4 @@ where <code>δ_t = r_t + γV(s_{t+1}) - V(s_t)</code></p><ul><li><strong>γ (gam
|
||||
2016 -
|
||||
2025
|
||||
Eric X. Liu
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/015353b">[015353b]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script></body></html>
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/b213faf">[b213faf]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script></body></html>
|
Reference in New Issue
Block a user