deploy: a7f1af6c7f
This commit is contained in:
@@ -11,7 +11,7 @@ Many routing mechanisms, especially “Top-K routing,” involve a discr
|
||||
1. Challenge: Non-Differentiability of Routing Functions Link to heading The Problem: Many routing mechanisms, especially “Top-K routing,” involve a discrete, hard selection process. A common function is KeepTopK(v, k), which selects the top k scoring elements from a vector v and sets others to $-\infty$ or $0$."><meta property="og:url" content="/posts/mixture-of-experts-moe-models-challenges-solutions-in-practice/"><meta property="og:site_name" content="Eric X. Liu's Personal Page"><meta property="og:title" content="Mixture-of-Experts (MoE) Models Challenges & Solutions in Practice"><meta property="og:description" content="Mixture-of-Experts (MoEs) are neural network architectures that allow different parts of the model (called “experts”) to specialize in different types of inputs. A “gating network” or “router” learns to dispatch each input (or “token”) to a subset of these experts. While powerful for scaling models, MoEs introduce several practical challenges.
|
||||
1. Challenge: Non-Differentiability of Routing Functions Link to heading The Problem: Many routing mechanisms, especially “Top-K routing,” involve a discrete, hard selection process. A common function is KeepTopK(v, k), which selects the top k scoring elements from a vector v and sets others to $-\infty$ or $0$."><meta property="og:locale" content="en"><meta property="og:type" content="article"><meta property="article:section" content="posts"><meta property="article:published_time" content="2025-07-02T00:00:00+00:00"><meta property="article:modified_time" content="2025-08-03T06:02:48+00:00"><link rel=canonical href=/posts/mixture-of-experts-moe-models-challenges-solutions-in-practice/><link rel=preload href=/fonts/fa-brands-400.woff2 as=font type=font/woff2 crossorigin><link rel=preload href=/fonts/fa-regular-400.woff2 as=font type=font/woff2 crossorigin><link rel=preload href=/fonts/fa-solid-900.woff2 as=font type=font/woff2 crossorigin><link rel=stylesheet href=/css/coder.min.6445a802b9389c9660e1b07b724dcf5718b1065ed2d71b4eeaf981cc7cc5fc46.css integrity="sha256-ZEWoArk4nJZg4bB7ck3PVxixBl7S1xtO6vmBzHzF/EY=" crossorigin=anonymous media=screen><link rel=stylesheet href=/css/coder-dark.min.a00e6364bacbc8266ad1cc81230774a1397198f8cfb7bcba29b7d6fcb54ce57f.css integrity="sha256-oA5jZLrLyCZq0cyBIwd0oTlxmPjPt7y6KbfW/LVM5X8=" crossorigin=anonymous media=screen><link rel=icon type=image/svg+xml href=/images/favicon.svg sizes=any><link rel=icon type=image/png href=/images/favicon-32x32.png sizes=32x32><link rel=icon type=image/png href=/images/favicon-16x16.png sizes=16x16><link rel=apple-touch-icon href=/images/apple-touch-icon.png><link rel=apple-touch-icon sizes=180x180 href=/images/apple-touch-icon.png><link rel=manifest href=/site.webmanifest><link rel=mask-icon href=/images/safari-pinned-tab.svg color=#5bbad5></head><body class="preload-transitions colorscheme-auto"><div class=float-container><a id=dark-mode-toggle class=colorscheme-toggle><i class="fa-solid fa-adjust fa-fw" aria-hidden=true></i></a></div><main class=wrapper><nav class=navigation><section class=container><a class=navigation-title href=/>Eric X. Liu's Personal Page
|
||||
</a><input type=checkbox id=menu-toggle>
|
||||
<label class="menu-button float-right" for=menu-toggle><i class="fa-solid fa-bars fa-fw" aria-hidden=true></i></label><ul class=navigation-list><li class=navigation-item><a class=navigation-link href=/posts/>Posts</a></li><li class=navigation-item><a class=navigation-link href=https://chat.ericxliu.me>Chat</a></li><li class=navigation-item><a class=navigation-link href=https://git.ericxliu.me/user/oauth2/Authenitk>Git</a></li><li class=navigation-item><a class=navigation-link href=https://coder.ericxliu.me/api/v2/users/oidc/callback>Coder</a></li><li class=navigation-item><a class=navigation-link href=https://rss.ericxliu.me/oauth2/oidc/redirect>RSS</a></li><li class=navigation-item><a class=navigation-link href=/>|</a></li><li class=navigation-item><a class=navigation-link href=https://sso.ericxliu.me>Sign in</a></li></ul></section></nav><div class=content><section class="container post"><article><header><div class=post-title><h1 class=title><a class=title-link href=/posts/mixture-of-experts-moe-models-challenges-solutions-in-practice/>Mixture-of-Experts (MoE) Models Challenges & Solutions in Practice</a></h1></div><div class=post-meta><div class=date><span class=posted-on><i class="fa-solid fa-calendar" aria-hidden=true></i>
|
||||
<label class="menu-button float-right" for=menu-toggle><i class="fa-solid fa-bars fa-fw" aria-hidden=true></i></label><ul class=navigation-list><li class=navigation-item><a class=navigation-link href=/posts/>Posts</a></li><li class=navigation-item><a class=navigation-link href=https://chat.ericxliu.me>Chat</a></li><li class=navigation-item><a class=navigation-link href=https://git.ericxliu.me/user/oauth2/Authenitk>Git</a></li><li class=navigation-item><a class=navigation-link href=https://coder.ericxliu.me/api/v2/users/oidc/callback>Coder</a></li><li class=navigation-item><a class=navigation-link href=/>|</a></li><li class=navigation-item><a class=navigation-link href=https://sso.ericxliu.me>Sign in</a></li></ul></section></nav><div class=content><section class="container post"><article><header><div class=post-title><h1 class=title><a class=title-link href=/posts/mixture-of-experts-moe-models-challenges-solutions-in-practice/>Mixture-of-Experts (MoE) Models Challenges & Solutions in Practice</a></h1></div><div class=post-meta><div class=date><span class=posted-on><i class="fa-solid fa-calendar" aria-hidden=true></i>
|
||||
<time datetime=2025-07-02T00:00:00Z>July 2, 2025
|
||||
</time></span><span class=reading-time><i class="fa-solid fa-clock" aria-hidden=true></i>
|
||||
7-minute read</span></div></div></header><div class=post-content><p>Mixture-of-Experts (MoEs) are neural network architectures that allow different parts of the model (called “experts”) to specialize in different types of inputs. A “gating network” or “router” learns to dispatch each input (or “token”) to a subset of these experts. While powerful for scaling models, MoEs introduce several practical challenges.</p><h3 id=1-challenge-non-differentiability-of-routing-functions>1. Challenge: Non-Differentiability of Routing Functions
|
||||
@@ -44,4 +44,4 @@ The <strong>Top-K routing</strong> mechanism, as illustrated in the provided ima
|
||||
2016 -
|
||||
2025
|
||||
Eric X. Liu
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/fe52a73">[fe52a73]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/a7f1af6">[a7f1af6]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
Reference in New Issue
Block a user