This commit is contained in:
eric
2025-12-27 22:05:57 +00:00
parent c75c89c088
commit 8bf55a3b50
30 changed files with 67 additions and 67 deletions

View File

@@ -1,9 +1,9 @@
<?xml version="1.0" encoding="utf-8" standalone="yes"?><rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom"><channel><title>Eric X. Liu's Personal Page</title><link>https://ericxliu.me/</link><description>Recent content on Eric X. Liu's Personal Page</description><generator>Hugo</generator><language>en</language><lastBuildDate>Sat, 27 Dec 2025 21:18:10 +0000</lastBuildDate><atom:link href="https://ericxliu.me/index.xml" rel="self" type="application/rss+xml"/><item><title>About</title><link>https://ericxliu.me/about/</link><pubDate>Fri, 19 Dec 2025 22:46:12 -0800</pubDate><guid>https://ericxliu.me/about/</guid><description>&lt;img src="https://ericxliu.me/images/about.jpeg" alt="Eric Liu" width="300" style="float: left; margin-right: 1.5rem; margin-bottom: 1rem; border-radius: 8px;"/&gt;
<?xml version="1.0" encoding="utf-8" standalone="yes"?><rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom"><channel><title>Eric X. Liu's Personal Page</title><link>https://ericxliu.me/</link><description>Recent content on Eric X. Liu's Personal Page</description><generator>Hugo</generator><language>en</language><lastBuildDate>Sat, 27 Dec 2025 22:05:12 +0000</lastBuildDate><atom:link href="https://ericxliu.me/index.xml" rel="self" type="application/rss+xml"/><item><title>From Gemini-3-Flash to T5-Gemma-2 A Journey in Distilling a Family Finance LLM</title><link>https://ericxliu.me/posts/technical-deep-dive-llm-categorization/</link><pubDate>Sat, 27 Dec 2025 00:00:00 +0000</pubDate><guid>https://ericxliu.me/posts/technical-deep-dive-llm-categorization/</guid><description>&lt;p&gt;Running a family finance system is surprisingly complex. What starts as a simple spreadsheet often evolves into a web of rules, exceptions, and &amp;ldquo;wait, was this dinner or &lt;em&gt;vacation&lt;/em&gt; dinner?&amp;rdquo; questions.&lt;/p&gt;
&lt;p&gt;For years, I relied on a rule-based system to categorize our credit card transactions. It worked&amp;hellip; mostly. But maintaining &lt;code&gt;if &amp;quot;UBER&amp;quot; in description and amount &amp;gt; 50&lt;/code&gt; style rules is a never-ending battle against the entropy of merchant names and changing habits.&lt;/p&gt;</description></item><item><title>About</title><link>https://ericxliu.me/about/</link><pubDate>Fri, 19 Dec 2025 22:46:12 -0800</pubDate><guid>https://ericxliu.me/about/</guid><description>&lt;img src="https://ericxliu.me/images/about.jpeg" alt="Eric Liu" width="300" style="float: left; margin-right: 1.5rem; margin-bottom: 1rem; border-radius: 8px;"/&gt;
&lt;p&gt;Hi, I&amp;rsquo;m &lt;strong&gt;Eric Liu&lt;/strong&gt;.&lt;/p&gt;
&lt;p&gt;I am a &lt;strong&gt;Staff Software Engineer and Tech Lead Manager (TLM)&lt;/strong&gt; at &lt;strong&gt;Google&lt;/strong&gt;, based in Sunnyvale, CA.&lt;/p&gt;
&lt;p&gt;My work focuses on &lt;strong&gt;Infrastructure Performance and Customer Engineering&lt;/strong&gt;, specifically for &lt;strong&gt;GPUs and TPUs&lt;/strong&gt;. I lead teams that bridge the gap between cutting-edge AI hardware and the latest ML models (like Gemini), ensuring optimal performance and reliability at Google Cloud scale. I thrive in the ambiguous space where hardware constraints meet software ambition—whether it&amp;rsquo;s debugging race conditions across thousands of chips or designing API surfaces for next-gen models.&lt;/p&gt;</description></item><item><title>The Convergence of Fast Weights, Linear Attention, and State Space Models</title><link>https://ericxliu.me/posts/the-convergence-of-fast-weights-linear-attention-and-state-space-models/</link><pubDate>Fri, 19 Dec 2025 00:00:00 +0000</pubDate><guid>https://ericxliu.me/posts/the-convergence-of-fast-weights-linear-attention-and-state-space-models/</guid><description>&lt;p&gt;Modern Large Language Models (LLMs) are dominated by the Transformer architecture. However, as context windows grow, the computational cost of the Transformers attention mechanism has become a primary bottleneck. Recent discussions in the AI community—most notably by Geoffrey Hinton—have highlighted a theoretical link between biological memory mechanisms (&amp;ldquo;Fast Weights&amp;rdquo;) and efficient engineering solutions like Linear Transformers and State Space Models (SSMs).&lt;/p&gt;
&lt;p&gt;This article explores the mathematical equivalence between Hintons concept of Fast Weights as Associative Memory and the recurrence mechanisms found in models such as Mamba and RWKV.&lt;/p&gt;</description></item><item><title>From Gemini-3-Flash to T5-Gemma-2 A Journey in Distilling a Family Finance LLM</title><link>https://ericxliu.me/posts/technical-deep-dive-llm-categorization/</link><pubDate>Mon, 08 Dec 2025 00:00:00 +0000</pubDate><guid>https://ericxliu.me/posts/technical-deep-dive-llm-categorization/</guid><description>&lt;p&gt;Running a family finance system is surprisingly complex. What starts as a simple spreadsheet often evolves into a web of rules, exceptions, and &amp;ldquo;wait, was this dinner or &lt;em&gt;vacation&lt;/em&gt; dinner?&amp;rdquo; questions.&lt;/p&gt;
&lt;p&gt;For years, I relied on a rule-based system to categorize our credit card transactions. It worked&amp;hellip; mostly. But maintaining &lt;code&gt;if &amp;quot;UBER&amp;quot; in description and amount &amp;gt; 50&lt;/code&gt; style rules is a never-ending battle against the entropy of merchant names and changing habits.&lt;/p&gt;</description></item><item><title>vAttention</title><link>https://ericxliu.me/posts/vattention/</link><pubDate>Mon, 08 Dec 2025 00:00:00 +0000</pubDate><guid>https://ericxliu.me/posts/vattention/</guid><description>&lt;p&gt;Large Language Model (LLM) inference is memory-bound, primarily due to the Key-Value (KV) cache—a store of intermediate state that grows linearly with sequence length. Efficient management of this memory is critical for throughput. While &lt;strong&gt;PagedAttention&lt;/strong&gt; (popularized by vLLM) became the industry standard by solving memory fragmentation via software, recent research suggests that leveraging the GPUs native hardware Memory Management Unit (MMU) offers a more performant and portable solution.&lt;/p&gt;
&lt;p&gt;This article explores the mathematical equivalence between Hintons concept of Fast Weights as Associative Memory and the recurrence mechanisms found in models such as Mamba and RWKV.&lt;/p&gt;</description></item><item><title>vAttention</title><link>https://ericxliu.me/posts/vattention/</link><pubDate>Mon, 08 Dec 2025 00:00:00 +0000</pubDate><guid>https://ericxliu.me/posts/vattention/</guid><description>&lt;p&gt;Large Language Model (LLM) inference is memory-bound, primarily due to the Key-Value (KV) cache—a store of intermediate state that grows linearly with sequence length. Efficient management of this memory is critical for throughput. While &lt;strong&gt;PagedAttention&lt;/strong&gt; (popularized by vLLM) became the industry standard by solving memory fragmentation via software, recent research suggests that leveraging the GPUs native hardware Memory Management Unit (MMU) offers a more performant and portable solution.&lt;/p&gt;
&lt;h4 id="the-status-quo-pagedattention-and-software-tables"&gt;
The Status Quo: PagedAttention and Software Tables
&lt;a class="heading-link" href="#the-status-quo-pagedattention-and-software-tables"&gt;