deploy: f1178d37f5
This commit is contained in:
@@ -16,6 +16,6 @@ The answer lies in creating a universal language—a bridge between the continuo
|
||||
<a class=heading-link href=#integrating-with-llms-two-powerful-paths-to-multi-modality><i class="fa-solid fa-link" aria-hidden=true title="Link to heading"></i>
|
||||
<span class=sr-only>Link to heading</span></a></h4><p>Once we have a contrastively-trained VQ-AE, we can use its output to give LLMs the ability to see and hear. There are two primary strategies for this.</p><p><strong>Path 1: The Tokenizer Approach - Teaching the LLM a New Language</strong></p><p>This path treats the RVQ IDs as a new vocabulary. It’s a two-stage process ideal for high-fidelity content generation.</p><ol><li><strong>Create a Neural Codec:</strong> The trained VQ-AE serves as a powerful “codec.” You can take any piece of media (e.g., a song) and use the codec to compress it into a sequence of discrete RVQ tokens (e.g., <code>[8, 5, 4, 1, 8, 5, 9, 2, ...]</code>).</li><li><strong>Train a Generative LLM:</strong> A new Transformer model is trained auto-regressively on a massive dataset of these media-derived tokens. Its sole purpose is to learn the patterns and predict the next token in a sequence.</li></ol><p><strong>Use Case:</strong> This is the architecture behind models like Meta’s MusicGen. A user provides a text prompt, which conditions the Transformer to generate a new sequence of RVQ tokens. These tokens are then fed to the VQ-AE’s decoder to synthesize the final audio waveform.</p><p><strong>Path 2: The Adapter Approach - Translating for a Language Expert</strong></p><p>This path is used to augment a powerful, pre-trained, text-only LLM without the astronomical cost of retraining it.</p><ol><li><strong>Freeze the LLM:</strong> A massive, pre-trained LLM (like LLaMA) is frozen. Its deep language understanding is preserved.</li><li><strong>Use the Pre-Quantized Embedding:</strong> Instead of using the discrete RVQ tokens, we take the rich, continuous embedding vector produced by our media encoder <em>just before</em> it enters the RVQ module.</li><li><strong>Train a Small Adapter:</strong> A small, lightweight projection layer (or “adapter”) is trained. Its only job is to translate the media embedding into a vector that has the same format and structure as the LLM’s own word embeddings. It learns to map visual concepts to their corresponding “word” concepts in the LLM’s latent space.</li></ol><p><strong>Use Case:</strong> This is the principle behind models like Google’s Flamingo. To answer a question about an image, the image is passed through the media encoder and adapter. The resulting “vision-as-a-word” vector is inserted into the prompt sequence alongside the text tokens. The frozen LLM can now “reason” about the visual input because it has been translated into a format it already understands.</p></div><footer><div id=disqus_thread></div><script>window.disqus_config=function(){},function(){if(["localhost","127.0.0.1"].indexOf(window.location.hostname)!=-1){document.getElementById("disqus_thread").innerHTML="Disqus comments not available by default when the website is previewed locally.";return}var t=document,e=t.createElement("script");e.async=!0,e.src="//ericxliu-me.disqus.com/embed.js",e.setAttribute("data-timestamp",+new Date),(t.head||t.body).appendChild(e)}(),document.addEventListener("themeChanged",function(){document.readyState=="complete"&&DISQUS.reset({reload:!0,config:disqus_config})})</script></footer></article><link rel=stylesheet href=https://cdn.jsdelivr.net/npm/katex@0.16.4/dist/katex.min.css integrity=sha384-vKruj+a13U8yHIkAyGgK1J3ArTLzrFGBbBc0tDp4ad/EyewESeXE/Iv67Aj8gKZ0 crossorigin=anonymous><script defer src=https://cdn.jsdelivr.net/npm/katex@0.16.4/dist/katex.min.js integrity=sha384-PwRUT/YqbnEjkZO0zZxNqcxACrXe+j766U2amXcgMg5457rve2Y7I6ZJSm2A0mS4 crossorigin=anonymous></script><script defer src=https://cdn.jsdelivr.net/npm/katex@0.16.4/dist/contrib/auto-render.min.js integrity=sha384-+VBxd3r6XgURycqtZ117nYw44OOcIax56Z4dCRWbxyPt0Koah1uHoK0o4+/RRE05 crossorigin=anonymous onload='renderMathInElement(document.body,{delimiters:[{left:"$$",right:"$$",display:!0},{left:"$",right:"$",display:!1},{left:"\\(",right:"\\)",display:!1},{left:"\\[",right:"\\]",display:!0}]})'></script></section></div><footer class=footer><section class=container>©
|
||||
2016 -
|
||||
2025
|
||||
2026
|
||||
Eric X. Liu
|
||||
<a href="https://git.ericxliu.me/eric/ericxliu-me/commit/f1178d3">[f1178d3]</a></section></footer></main><script src=/js/coder.min.6ae284be93d2d19dad1f02b0039508d9aab3180a12a06dcc71b0b0ef7825a317.js integrity="sha256-auKEvpPS0Z2tHwKwA5UI2aqzGAoSoG3McbCw73gloxc="></script><script defer src=https://static.cloudflareinsights.com/beacon.min.js data-cf-beacon='{"token": "987638e636ce4dbb932d038af74c17d1"}'></script></body></html>
|
||||
Reference in New Issue
Block a user